
Software COTS
For Real Time
Broadcast

Connecting IT to Broadcast

EG
ESSENTIAL GUIDES

Essential
Guide

Introduction from Tomer Schechter &
Gal Waldman

2

www.tagvs.com

© The Broadcast Bridge 2019

Hello, and thank you for downloading this
Essential Guide, covering the world of
100% Software 100% COTS 100% IP for
Live Production and Playout applications.

TAG Video Systems and The Broadcast
Bridge strongly believe there is a
lot of misinformation concerning
uncompressed (and compressed)
workflows, working in a 100% software,
100% COTS environment.

TAG therefore decided to partner with
the premiere technical knowledge source
in our industry to dig deeper than ever
before and articulate exactly how this
is being done in full production in the
leading broadcasters in our industry.

Imagine you could easily manage SMPTE
2110, JPEG 2k, and H.264 all within the
same software? What if you could use
off the shelf hardware to deploy multiple
applications (Probing, Monitoring &
Multiviewing) with the scalability and
flexibility that you define. When and
where you need it.

After 11 years of deploying over 40,000
channels of 100% software on 100%
COTs in 100% IP for the global leaders
in broadcast and media, we have
gotten used to the skepticism. So we
decided to go deeper than we have
even been before. Dive inside the code
and inside the hardware to make you
comfortable with exactly how we do it,
so you no longer need to worry about
the constraints of traditional broadcast
hardware solutions specifically, flexibility,
and scale.

TAG is very active in many of the
organizations committed to helping
standardize IP workflows , including
membership in standards organizations,
participation in interoperability events
and plugfests, and ensuring our API’s are
available for maximum utilization for both
out clients and our partners.

We hope to share our experiences with
you and help you help your customers
have the most engaging experiences
possible.

We hope you will find this Essential
Guide to “Software COTS For Real Time
Broadcast” useful, and that it becomes a
tool you can refer to again and again.

Please share it with your friends and
please let us know how we may help you
by contacting us at info@tagvs.com.

Best regards,

Tomer & Gal

Tomer Schechter & Gal Waldman: Founders of TAG Video Systems.

Supported by

mailto:info%40tagvs.com?subject=

Software COTS For Real Time
Broadcast

3

Connecting IT to Broadcast

By Tony Orme, Editor at The Broadcast Bridge

Traditional broadcast infrastructures
relied on bespoke hardware devices to
process video and audio in real time.
But the advances in High Performance
Computing (HPC) in unrelated industry
sectors such as high-frequency-trading
and telecommunications has led to a
proliferation of high-speed hardware
COTS server and network equipment
becoming available for industries such
as broadcast television.

Broadcasting has traditionally relied on
hardware solutions to distribute and
process uncompressed baseband video
due to the high-speed data and low-
latency requirements. Dedicated cables
with point-to-point connectivity provided
predictable bandwidths and low latency
but at the expense of scalability and
flexibility. It’s difficult to expand an SDI
router without redesigning large parts
of the infrastructure resulting in quickly
escalating costs. Furthermore, any
significant additions to the service would
often require the procurement of even
more hardware. Not only would this add
to the direct broadcast costs, but also
to the support services such as power,
air-conditioning, and space.

© The Broadcast Bridge 2019

4

Essential Guide
Software COTS For Real Time Broadcast - 9/2019

© The Broadcast Bridge 2019

Diagram 1 – The Linux kernel showing the relationship between the hardware and user. The User Program is in the user-space and everything right of the
kernel is in the kernel-space.

Software services are often seen as the
optimal solution due to their scalable
flexibility and faster time to market.
However, the unpredictable nature of
software timing introduced latency and
the high-speed data-throughput required
made the proposition of a software
solution nearly impossible, especially
with COTS solutions. Up to recently, the
idea of developing software solutions
on COTS hardware didn’t even appear
on the radar for many broadcasters.
However, this has now changed.

The synchronous nature of broadcasting
means we still have some challenges to
overcome to make real-time media work
in an asynchronous IT environment and
in this Essential Guide we explain how
this has been achieved. COTS servers
and networks can now deliver the
processing speed and data throughput
needed for broadcast television, but to
achieve SMPTE ST-2110 and ST-2022-6
timing constraints, more work must be
done at the kernel software level.

A multiviewer is a typical example of a
device that would have traditionally used
FPGA’s. They are a critical part of the
broadcast workflow as engineers rely
on them to provide accurate confidence
monitoring including pay-per-view
services. Software COTS multiviewers
are a perfect example of the challenges
that have now been overcome to provide
the guaranteed data throughput and low
latency demanded by uncompressed
video.

Kernels

In kernel based operating systems such
as Linux, the kernel is the software
responsible for interfacing hardware
peripherals to users to provide a layer
of hardware independence. That is,
standard peripherals such as network
interface controllers (NIC’s), keyboards,
and hard disk drives have their low-level
interfaces abstracted away from the user
and developer through a common API
(Application Programming Interface).
The kernel also provides the file system
and a method of time sharing so many
processes can be run on the server
independently of each other but giving
the illusion of running in parallel.

Added to the kernel are programs
that facilitate the user operation and
management of the server with tools
such as the bash shell for command
line access, and programs including “ls”
to list the files in a directory. There are
network management programs such
as “ifconfig” and methods of managing
user rights to files and directories with
“chmod”. The kernel, along with all these
other programs (and there could be
thousands of them), all combine to form
the operating system. Linux is not an
operating system in itself, it’s a kernel.
Distributions such as Ubuntu, Debian,
and SUSE are operating systems as they
take the kernel and add other software to
it to form a complete operating system.

This all culminates in the server running a
service that allows multiple programs to
be scheduled and access the hardware
in a timely and organized manner without
conflict.

USER
PROGRAM

USER
PROGRAM

KERNEL

DRIVER

DRIVER

DRIVER

INTERFACE

INTERFACE

INTERFACE

DEVICE

DEVICE

DEVICE

HARDWARESOFTWARE

5

Connecting IT to Broadcast

© The Broadcast Bridge 2019

Generic Solutions

However, the kernel is a generic solution
and asynchronous in its operation.
Unlike a counter running on an FPGA
that guarantees events happen within a
tight time specification, a kernel contains
message queues and buffers, and
process scheduling leading to relatively
unpredictable event timing. The kernel
and operating system sacrifice timing
accuracy for a generalized ease of use.
And this is the key challenge we face with
COTS implementations, that is, making
the whole system respond in a more
predictable manner.

The Linux kernel has two distinct
methods of operations; user-space
and kernel-space. Programs providing
services such as multiviewers reside in
the user-space but the low-level access
to the hardware resides in the kernel-
space. The kernel presents a library of
system-call API’s for the user program
to call and abstract away the hardware
to provide a generic API. This greatly
simplifies access to the NIC and other
peripherals for the developer.

One of the challenges of using the Linux
network stack (the suite of networking
software services residing in the kernel)
is that it can be relatively slow. As the
kernel provides a generic API through
system-calls for multiple processes, it
also provides many functions that may
not be needed and add unnecessary
overhead for a broadcast specific
application.

Furthermore, services such as packet
filtering, forwarding, routing, and socket
allocation all take place in the kernel.
A whole section is dedicated to TCP
which won’t be needed in a broadcast
application because we are only
interested in UDP for ST-2110 and ST-
2022-6.

Receive

When a packet is received by the NIC it
is initially stored in its own local buffer. A
DMA (Direct Memory Address) process
takes place to copy the packet directly
into the kernel’s memory space. Upon
completion, the CPU is invoked and
a series of house keeping tasks take
place. One of these is the skbuf (socket
buffer) process. This is used deep within
the Linux kernel to help validate, filter
and route packets. The skbuf is a form
of vectored IO, that is, the skbuf data
structures contain header information,
populated by the kernel, about the
ethernet frame and encapsulated IP
packet. This allows the application
data received from the network and
the header information to be stored in
different places.

In the generic Linux network stack
solution, multiple user processes may
need their own copies of the received
IP packet or frame. The socket process
creates an interface and data structure
for each process it is attached to.

It determines which process needs a
copy of the data and copies the IP packet
or complete ethernet frame into its
user-space memory. This is a necessary
function in the general network stack
solution as many processes may need
copies of the data. The skbuf data
structure and pointer system makes
this process more efficient for multiple
processes receiving the data.

A side effect is that a double memory
copy has taken place, the first is a DMA
process from the NIC to the kernel-space
memory, this is very fast as it is hardware
accelerated and it doesn’t take up much
CPU time, and the second is a CPU
intensive process to copy the packet
from the kernel-space memory to the
user-space memory, and this may be
repeated multiple times depending on
how many sockets are configured for
multiple processes. Furthermore, the
kernel is acting as a bottleneck.

APPLICATION

SOCKET / TCP / IP / ETHERNET

DRIVER

NIC

RECEIVE SOCKET BUFFER

NAPI (POLL). NO QUEUEING

RX RING

NIC INTERNAL BUFFER

WIRE. ETHERNET FLOW CONTROL

Diagram 2 – Receive process and buffers occurring between the hardware, kernel, and user program.

6 © The Broadcast Bridge 2019

When the packet is initially copied to
the kernel-space memory, the kernel
validates the packet checksums and
populates many of the values in its skbuf
data structures. These are used by other
processes in the kernel and user spaces.
Copying the packets from the kernel-
space memory to the sockets in the user-
space memory involves queueing them in
a buffer. Further adding latency.

Sockets are used extensively in Linux
to abstract away the concept of
communicating with other processes
on the same server and other servers
using the standard Linux descriptor
file. In essence, every Linux input and
output operation is accomplished by
reading and writing to a descriptor
file. A descriptor file can be a text file,
terminal, NIC, or something else. The
same system-calls such as read() and
write() are used to communicate with
all compliant devices thus providing a
generic API. To the user program they
are treated the same, but the underlying
kernel code is written specifically for the
device being controlled.

The user-space process either
continually polls the network socket, or
it waits for a signal from the kernel to
invoke a user-space process indicating
the packet is now available to the user
application.

Transmit

When a packet is sent from the user-
space process the program first writes it
to the relevant network socket associated
with the NIC. The socket has a queueing
buffer to temporarily hold the packet (or
packets) allowing the user-process to
continue without too much delay. The
socket process is invoked and creates
the necessary packet headers and
checksums such as the UDP header
and then the IP and Ethernet header.
At each stage the IP encapsulation, the
various checksums are calculated and
appended as required. A transmit skbuf
is created and all the fields within the
data structures are populated.

The transmit skbuf data structures are
required as multiple processes may
need to transmit data from the same
NIC, this is quite likely if the server has
processes such as SSH and HTTP. The
skbuf structures are linked together so
the transmit part of the NIC driver can
provide a many-one mapping of packets
to stream them on a single NIC. This idea
scales as multiple NICs can be used for
load balancing across multiple network
links and CPU processors.

The socket process writes the packets
to the transmit queue of the NIC’s
driver which in turn writes the packets
to another queue for the NICs transmit
engine. When the NIC is ready, it finally
transmits the packets across the ethernet
to send them to their next location.

The speed with which the packets can
be sent is initially governed by the wire
speed of the NIC. If this is 10Gbps
then due to packet overhead and NIC
processing, the fastest the NIC could
hope to transmit is approximately 90%
of the line speed, or 9Gbps. If there is
network congestion and the NIC cannot
write packets to the wire fast enough,
then the later packets queue in the
drivers’ buffer. If overflow occurs, then
the transmit queue in the socket buffer
queue starts to accumulate packets,
and if this fills, the socket send buffer
connected to the application eventually
fills and any packets generated after that
are lost.

APPLICATION

SOCKET / TCP / IP / ETHERNET

DRIVER

NIC

SEND SOCKET BUFFER

TRANSMIT QUEUE (qdisc)

TX RING

NIC INTERNAL BUFFER

WIRE. ETHERNET FLOW CONTROL

Diagram 3 – Transmit process and buffers occurring between the hardware, kernel, and user program.

Essential Guide
Software COTS For Real Time Broadcast - 9/2019

7

Connecting IT to Broadcast

© The Broadcast Bridge 2019

Evenly Gapped

One important aspect of ST-2110 is that
the packets must be evenly gapped at
about six-microsecond intervals for HD
progressive. There is some variance in
these, and packets are not sent during
line and field blanking, but the tolerance
is very tight. It can be seen from the
previous explanation of the transmit
queue that the number of buffers involved
and potential for latency and packet
jitter will make it difficult to achieve these
constraints.

To make the Linux stack as flexible
and generic as possible, there is a
great deal of overhead going on in the
kernel-space processing. As we have a
very specific application in broadcast
IP infrastructures, that is ST2110 and
ST-2022-6 UDP packet distribution,
most of the features provided in the
kernel-space processing creates an
unnecessary overhead. With a specific
user-application running on a COTS
server such as multiviewer, we can make
some very specific assumptions about
the data-stream for our case. Namely, we
don’t need to use most of the networking
processes the kernel is providing for us.

With ST-2110 and ST-2022-6
applications, the major requirement
is to quickly move the data to the
required memory space for the user-
process application. If this was a video
compression application, then our
focus would be less on network data
throughput and more on CPU resource
efficiency as compression can be CPU
intensive. But in the ST-2110 and ST-
2022-6 broadcast IP infrastructures,
we’re mainly interested in achieving high
data throughput with the smallest latency
possible.

Kernel Bypass

To achieve this, we use a system called
kernel-bypass. To be specific, we are
only bypassing the network stack part
of the processor for a specified NIC or
group of NIC’s. We are not bypassing the
kernel in its entirety.

On the server receive side, in kernel-
bypass, the NIC is polled directly by the
kernel-bypass code running in user-
space to determine if it has received a
packet from the ethernet into its local
buffer. If it has, then the kernel-bypass
code uses a DMA process to transfer the
data directly into the multiviewer user-
space memory making it available to the
application. As the packet is expected
to be a UDP packet then the code can
be optimized for this one specific case.
There may be TCP connections, but it
is up to the vendor how they deal with
these. They may well just be ignored.

Using kernel-bypass on the receive
side improves data throughput by
several orders of magnitude as a layer
of buffering has been removed and the
kernel-space bottleneck serving the
sockets has been negated.

KERNEL

USER

HARDWARE

KERNEL

USER

DRIVER

TCP / IP
TRANSPORT

SOCKETS
LAYER

APPLICATION APPLICATION

SOCKETS
LAYER

TCP / IP
TRANSPORT

HARDWARE

KERNEL
BYPASS

DRIVER

TRADITIONAL MODEL KERNEL BYPASS MODEL

KERNEL BYPASS

Diagram 4 – Kernel bypass allows direct connection to the hardware from the user-space to significantly improve data throughput and reduce latency for
broadcast applications. The kernel network stack can still be used for monitoring and maintenance processes using a separate NIC.

8 © The Broadcast Bridge 2019

The transmit side of kernel bypass is
similar with one key difference, and
that is related to making the packets
evenly gapped. When the multiviewer
application running in user-space needs
to send a packet in kernel-bypass, it uses
the DMA process to write the data from
its memory to the NIC buffer directly.
This significantly reduces kernel latency.
However, it does not necessarily provide
evenly gapped packets.

NIC Solutions

NIC’s employ many strategies to transmit
packets to the ethernet network. Some
wait for their buffers to be half full
before they start transmission, and
some will transmit as soon as they
receive a packet. Ethernet networks
tend to work in burst mode to improve
efficiencies so NIC’s tend to follow this
and provide burst transmission. But ST-
2110 demands evenly gapped ethernet
frames.

To date, the easiest way of achieving
this is to use NIC’s built specifically
using hardware timers to pace packet
transmission. Such NIC’s can be
programmed to evenly gap (within
limits) packets to meet the SMPTE
specifications for narrow transmission
to make it compatible with hardware
receivers downstream. This helps reduce
latency as the receive buffers can be
significantly reduced in size.

However, programming the NIC’s and
writing kernel-bypass code requires
a deep understanding of not only the
specific hardware device drivers, but
the interaction between the user-space
buffers, NIC buffers, and the DMA
process that links them. Effective buffer
management is critical in making sure the
two buffers are full enough so they don’t
empty, but not so full that packets are
dropped or latency increases.

Dedicated NICs

Kernel-bypass assumes at least one
NIC is dedicated to transmitting and
receiving real-time video and audio as it
provides a one-to-one mapping between
the NIC and the user-space process.
Therefore, a sperate NIC is needed for
other applications for maintenance and
monitoring using SSH and HTTP type
protocols. This helps enormously with
system integration as the low latency
time critical media multicast streams can
be kept away from the TCP traffic.

However, advanced NIC processing does
allow for the provision of just a single
NIC within the server. Complex traffic
prioritization algorithms can determine
the optimal routes for kernel IP traffic
as well as kernel-bypass broadcast IP
streams.

The concept of moving data from
user-space directly to the NIC without
storing data in the kernel-space buffers
is referred to as zero-copy. Quite often
the DMA is used to provide hardware
acceleration and further improving data
throughput.

Specialist NIC’s such as these are
available from several vendors
who specialize in low latency data
distribution in other industries
including high-frequency-trading and
telecommunications. Consequently, they
still tick the COTS box.

Some of the data throughput used in
broadcast IP infrastructures is truly
amazing. Not so long ago, 10Gbps was
considered high-end. Now 25Gbps
and 40Gbps infrastructures are finding
their place in broadcast infrastructures,
especially as we look at UHD and 4K.
But even an HD progressive stream can
generate just under 3Gbps, or about
200,000 IP packets a second - a colossal
amount of data.

COTS servers can host multiple NICs
within one chassis. This allows network
administrators much more freedom when
balancing loads for multicast streams,
something most broadcast IP video and
audio infrastructures will be using.

The hardware restrictions of the past
have been removed by the software
COTS solutions now available.
Flexible and scalable infrastructures
are achievable giving broadcasters
unprecedented choice.

Vendors are now able to deliver software
solutions that were once only achievable
in hardware. Software multiviewers
receiving ST-2110 and ST-2022-6 IP
streams are now available in COTS
servers, even for 4K and UHD. Servers
are only going to get faster and software
more efficient, so there is a world of
opportunity opening in front of us for
software COTS solutions.

Essential Guide
Software COTS For Real Time Broadcast - 9/2019

9 © The Broadcast Bridge 2019

By Tomer Schechter & Gal Waldman: Founders of TAG Video Systems.

The Sponsors Perspective

Multiviewing and Probing for Live Production and Playout
Using 100% Software on COTS Servers

Executive Summary

The preceding article lays down the foundation of how, thanks
to IP and advanced software techniques, it is now possible
to support uncompressed video signals in 100% software
solutions running on Commercial Off the Shelf (COTS)
computers servers. This key development means that complex
live production and playout workflows can be implemented
on generic IT equipment leading to the economies and added
flexibility of the IT industry’s data center model.

Here, we take a look at one of the more complex functions in
live production and playout applications; Multi-View monitoring
and probing and how TAG Video Systems works with
uncompressed formats such as SMPTE ST 2110 and SMPTE
ST 2022-6 as well as compressed formats such as JPEG
2k, H.264 and H.265 all within the same system to bring the
maximum flexibility and scalability to these critical broadcast
applications.

Successfully Deploying 100% SW 100% COTS with Uncompressed IP Signals.

www.tagvs.com

Supported by

TAG Multi-View Monitoring for Live Production and Playout.

10 © The Broadcast Bridge 2019

Live Production

Of all the applications in a broadcast facility, none are more
demanding technically and operationally than live production.
Below is an overview of typical live production workflow. On
the left we have a combination of local cameras and external
feeds arriving by either satellite or fiber. In most cases the
feeds are decoded back to baseband (uncompressed) but in
some remote production applications some feeds arrive as
J2K encoded (compressed) and remain compressed within the
production facility. Then there are the core functions of replay,
graphics and the production switcher. On the far right we see
the various different rooms and operator positions where the
cameras, feeds, replay and production elements are monitored.
Each operational position is equipped with a monitor wall
consisting of multiple displays each showing a mosaic
consisting of multiple videos sources, clocks, timers, under
monitor displays and tally indicators. Pictured at the center of
the figure is the Multi-View processor which receives all of the
signals and creates multi-view outputs to feed the monitor wall
displays.

Challenges of Multi-View Monitoring in Live
Production

Scale:
The sheer number of uncompressed inputs and outputs within
a live production requires very high bandwidth to allow the
multiviewer to handle, in the example pictured above there
are over 256 inputs displayed on 32 independent multi-view
screens.

Latency:
The speed in which the data must be processed in the
multiviewer in order to offer the sub 2 frames per second
latency that is critical in live production.

Quality:
Scale and low latency must be achieved while not scarifying the
image quality when scaling HD and UHD images for the multi-
view display.

Integration:
Must integrate seamlessly with tally and broadcast control
systems to handle dynamic nature of a typical live production.

www.tagvs.com

Supported by

11 © The Broadcast Bridge 2019

The TAG Live Production Solution

Until recently, the only option to handle these performance
requirements was for the multiviewer to be based on dedicated,
broadcast specific hardware. TAG is more commonly
recognized for being the first to provide a software based
multi-viewing of compressed video signals. In 2017 TAG
introduced support for SMPTE ST-2020-6 and then ST-2110
uncompressed video signals and deployed 1000’s of channels
combining compressed and uncompressed signals. Then
in 2018 TAG added integration with tally management and
broadcast control systems.

TAG Video Systems introduced a 100% software, multi-view
monitoring solution for live production applications in 2017 that
handles native ST 2110 and ST 2022-6 uncompressed signals
while running on generic COTS server hardware. Today TAG
has deployed 1000’s of channels globally of live production
and playout managing both uncompressed and compressed
formats all within the same solution. Below is an overview
of the TAG solution and how it has overcome the traditional
challenges.

Scale:
Infinitely scalable. Unlimited number of inputs and outputs can
be managed. Processing requirements are easily defined to
calculate the number of COTS servers required to deploy. Scale
the system when and where you want at whatever number of
inputs and outputs.

Latency:
Lowest latency of any software multiviewer in the market - sub
2 frames per second.

Quality:
Supports full UHD and HD inputs and performs high quality
scaling to produce UHD multi-view mosaic outputs with the
image quality demanded by the most discerning TDs and
Camera Shaders.

Integration:
Fully supports all major tally and broadcast control systems

Agility:
Runs on the same generic COTS server hardware used by other
production and IT systems.

www.tagvs.com

Supported by

12 © The Broadcast Bridge 2019

www.tagvs.com

Supported by

Playout

The playout application has many of the same challenges of
live production. The main differences are the need to support
more different compressed and uncompressed formats and the
need to do probing of the various signals to detect signal faults.
Below is an illustration of the workflow of a typical playout
facility.

A playout facility typically includes a combination of
compressed and uncompressed signals which need to be
monitored by operators managing the channels. In the facility
illustrated above the playout area integrates a combination
of pre-recorded material and live content originating on
remote feeds or from the control room of local studios. The
uncompressed is represented by the blue arrows.

Once encoded for delivery we enter the compressed world
represented here by the green arrows and OTT ABR/HLS/
Dash feeds represented by purple arrows. The TAG probing,
monitoring and multiviewing solution is represented above with
typical high-density display layouts and integration with 3rd
party network management systems (NMS).

13 © The Broadcast Bridge 2019

www.tagvs.com

Supported by

TAG Playout Solution

Below is an illustration of the functionality provided by the
TAG solution for probing, and multviewing within the playout
application. TAG’s ability to work with both uncompressed and
compressed formats provides the greatest flexibility in handling
the most complex workflows. In addition, TAG’s solution offers
both the probing and multiviewing function within the same
solution which provides simplified workflows for the operators.
Finally, TAG’s robust and open API structure allows deep
integration with third party network management systems and
broadcast control systems to be easily configured and provide
you with the critical information you need to operate and
manage the facility. All within a 100% software, 100% COTS
solutions.

TAG Leveraging the Full Potential of IP Workflows

For years broadcasters have recognized the value of moving
to an IP workflow. Until recently, this promise has not been
fully leveraged due to the massive bandwidth, speed and
quality requirements of the primary broadcast applications.
Both the live production and playout applications push these
requirements to the limit. And within these applications, the
technical demands on the multiviewer with the large number
of inputs, outputs, speed quality and agility, have required
dedicated hardware to process the application.

TAG Video Systems has conquered this limitation and offers
100% software running on 100% standard off the shelf
hardware solutions for probing, monitoring and multiviewing,
for all broadcast applications (live production, playout, satellite/
cable/IPTV and OTT delivery) integrated into one solution.

This now provides broadcasters with far more simplified
workflows, with the highest level of scalability and flexibility
in the market at the highest quality. The use of COTS server
hardware frees broadcasters from having to buy and support
custom, application specific hardware or vendor supplied
computer appliances.

We believe strongly that in the near future, broadcasters will
be able to deploy 100% software on COTS hardware for all
functions across the broadcast ecosystem and finally leverage
the full potential of IP.

WP

CSFind Out More

For more information and access to white papers, case
studies and essential guides please visit:

thebroadcastbridge.com

9/2019

Connecting IT to Broadcast

MEDIA CASE STUDIES

WHITE PAPERS

© The Broadcast Bridge 2019

EG
ESSENTIAL GUIDES

Supported by

http://thebroadcastbridge.com

